68 research outputs found

    Whole-genome methylation analysis of benign and malignant colorectal tumours

    Get PDF
    Changes in DNA methylation, whether hypo- or hypermethylation, have been shown to be associated with the progression of colorectal cancer. Methylation changes substantially in the progression from normal mucosa to adenoma and to carcinoma. This phenomenon has not been studied extensively and studies have been restricted to individual CpG islands, rather than taking a whole-genome approach. We aimed to study genome-wide methylation changes in colorectal cancer. We obtained 10 fresh-frozen normal tissue-cancer sample pairs, and five fresh-frozen adenoma samples. These were run on the lllumina HumanMethylation27 whole-genome methylation analysis system. Differential methylation between normal tissue, adenoma and carcinoma was analysed using Bayesian regression modelling, gene set enrichment analysis (GSEA) and hierarchical clustering (HC). The highest-rated individual gene for differential methylation in carcinomas versus normal tissue and adenomas versus normal tissue was GRASP (padjusted  = 1.59 × 10(-5) , BF = 12.62, padjusted  = 1.68 × 10(-6) , BF = 14.53). The highest-rated gene when comparing carcinomas versus adenomas was ATM (padjusted  = 2.0 × 10(-4) , BF = 10.17). Hierarchical clustering demonstrated poor clustering by the CIMP criteria for methylation. GSEA demonstrated methylation changes in the Netrin-DCC and SLIT-ROBO pathways. Widespread changes in DNA methylation are seen in the transition from adenoma to carcinoma. The finding that GRASP, which encodes the general receptor for phosphoinositide 1-associated scaffold protein, was differentially methylated in colorectal cancer is interesting. This may be a potential biomarker for colorectal cancer

    Familial clustering of Leiomyomatosis peritonealis disseminata: an unknown genetic syndrome?

    Get PDF
    BACKGROUND: Leiomyomatosis peritonealis disseminata (LPD) is defined as the occurrence of multiple tumorous intraabdominal lesions, which are myomatous nodules. LPD is a rare disease with only about 100 cases reported. The usual course of LPD is benign with the majority of the patients being premenopausal females. Only two cases involving men have been reported, no syndrome or familial occurrence of LPD has been described. CASE PRESENTATION: We describe a Caucasian-American family in which six members (three men) are diagnosed with Leiomyomatosis peritonealis disseminata (LPD) and three deceased family members most likely had LPD (based on the autopsy reports). Furthermore we describe the association of LPD with Raynaud's syndrome and Prurigo nodularis. CONCLUSION: Familial clustering of Leiomyomatosis peritonealis disseminata (LPD) has not been reported so far. The etiology of LPD is unknown and no mode of inheritance is known. We discuss possible modes of inheritance in the presented case, taking into account the possibility of a genetic syndrome. Given the similarity to other genetic syndromes with leiomyomatosis and skin alterations, we describe possible similar genetic pathomechanisms

    The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fumarate hydratase (HGNC approved gene symbol – <it>FH</it>), also known as fumarase, is an enzyme of the tricarboxylic acid (TCA) cycle, involved in fundamental cellular energy production. First described by Zinn <it>et al </it>in 1986, deficiency of FH results in early onset, severe encephalopathy. In 2002, the Multiple Leiomyoma Consortium identified heterozygous germline mutations of <it>FH </it>in patients with multiple cutaneous and uterine leiomyomas, (MCUL: OMIM 150800). In some families renal cell cancer also forms a component of the complex and as such has been described as hereditary leiomyomatosis and renal cell cancer (HLRCC: OMIM 605839). The identification of FH as a tumor suppressor was an unexpected finding and following the identification of subunits of succinate dehydrogenase in 2000 and 2001, was only the second description of the involvement of an enzyme of intermediary metabolism in tumorigenesis.</p> <p>Description</p> <p>The <it>FH </it>mutation database is a part of the TCA cycle gene mutation database (formerly the succinate dehydrogenase gene mutation database) and is based on the Leiden Open (source) Variation Database (LOVD) system. The variants included in the database were derived from the published literature and annotated to conform to current mutation nomenclature. The <it>FH </it>database applies HGVS nomenclature guidelines, and will assist researchers in applying these guidelines when directly submitting new sequence variants online. Since the first molecular characterization of an <it>FH </it>mutation by Bourgeron <it>et al </it>in 1994, a series of reports of both FH deficiency patients and patients with MCUL/HLRRC have described 107 variants, of which 93 are thought to be pathogenic. The most common type of mutation is missense (57%), followed by frameshifts & nonsense (27%), and diverse deletions, insertions and duplications. Here we introduce an online database detailing all reported <it>FH </it>sequence variants.</p> <p>Conclusion</p> <p>The <it>FH </it>mutation database strives to systematically unify all current genetic knowledge of <it>FH </it>variants. We believe that this knowledge will assist clinical geneticists and treating physicians when advising patients and their families, will provide a rapid and convenient resource for research scientists, and may eventually assist in gaining novel insights into FH and its related clinical syndromes.</p

    Hereditary leiomyomatosis and renal cell cancer presenting as metastatic kidney cancer at 18 years of age: implications for surveillance

    Get PDF
    Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant syndrome characterized by skin piloleiomyomas, uterine leiomyomas and papillary type 2 renal cancer caused by germline mutations in the fumarate hydratase (FH) gene. Previously, we proposed renal imaging for FH mutation carriers starting at the age of 20 years. However, recently an 18-year-old woman from a Dutch family with HLRCC presented with metastatic renal cancer. We describe the patient and family data, evaluate current evidence on renal cancer risk and surveillance in HLRCC and consider the advantages and disadvantages of starting surveillance for renal cancer in childhood. We also discuss the targeted therapies administered to our patient

    Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation

    Get PDF
    This is the final version. Available from eLife Science Publications via the DOI in this record. Data availability: GWAS data from the outcome diseases studied is available from links published in the original studies (Supplementary File 1ci). FinnGen data is available at: https://finngen.gitbook.io/documentation/, and the list of disease outcomes used is in Supplementary File 1cii. Individual-level UK Biobank data cannot be provided, but it is available by application to the UK Biobank: https://www.ukbiobank.ac. uk, and a list of the traits used is in Supplementary File 1ciii. Code used to conduct this analysis will be made available on GitHub after removing any sensitive information (https://github.com/susiemartin/ uncoupling-bmi, copy archived at swh:1:rev:f3472762ad6cb7f313656f684e07c14b8735efe5).Background: Some individuals living with obesity may be relatively metabolically healthy, whilst others suffer from multiple conditions that may be linked to adverse metabolic effects or other factors. The extent to which the adverse metabolic component of obesity contributes to disease compared to the non-metabolic components is often uncertain. We aimed to use Mendelian randomisation (MR) and specific genetic variants to separately test the causal roles of higher adiposity with and without its adverse metabolic effects on diseases. Methods: We selected 37 chronic diseases associated with obesity and genetic variants associated with different aspects of excess weight. These genetic variants included those associated with metabolically ‘favourable adiposity’ (FA) and ‘unfavourable adiposity’ (UFA) that are both associated with higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample MR to test the effects on the chronic diseases. Results: MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout. Second, 9 conditions where the non-metabolic effects of excess weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism. Conclusions: Our results assist in understanding the consequences of higher adiposity uncoupled from its adverse metabolic effects, including the risks to individuals with high body mass index who may be relatively metabolically healthyMedical Research Council (MRC)Diabetes UKWorld Cancer Research FundMedical Research CouncilDiabetes UKWorld Cancer Research FundCancer Research UKUniversity of Bristo

    Absence of progesterone receptor associated with secondary breast cancer in postmenopausal women

    Get PDF
    The relationship between expression of receptors for oestrogen and progesterone (ER and PR) and disease progression in breast cancer was investigated by comparing immunocytochemical determinations of ER and PR in fine needle aspirates from primary and secondary breast tumours. Rates of receptor expression were significantly higher in primary than in secondary lesions: for ER 63.3% (n = 689) compared with 45.3% (n = 223), and for PR 53.7% (n = 443) compared with 33.1% (n = 121). The effect of menopausal status was examined by subdividing the patient cohort into those over or under the age of 50 years. In both instances, ER expression in secondary tumours was relatively low; however, only postmenopausal patients had significantly lower rates of PR expression in secondary tumours. Consistent with this, an increase in the ER+PR– profile in secondary tumours compared with primary cases from postmenopausal patients was seen, and in a multivariate analysis, a specific absence of PR expression in secondary tumours was revealed. Comparison of ER and PR expression in simultaneously sampled primary tumours and lymph node metastases from the same patient showed that receptor expression was stable with progression to a metastatic site as results were concordant for ER in 92% (n = 88) and PR in 93.8% of cases (n = 65). These results suggest that absence of PR expression in primary breast cancer is associated with disease progression and may be a marker of an aggressive tumour phenotype. © 1999 Cancer Research Campaig

    Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer

    Get PDF
    Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10−7), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10−7); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10−7 and OR = 1.09, P = 7.4 × 10−8); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10−9), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10−6). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10−4) and DNA mismatch repair genes (P = 6.1 × 10−4) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC

    The epigenetic landscape of renal cancer

    Get PDF
    This is an accepted manuscript of an article published by Nature in Nature Reviews: Nephrology on 28/11/2016, available online: https://doi.org/10.1038/nrneph.2016.168 The accepted version of the publication may differ from the final published version.The majority of kidney cancers are associated with mutations in the von Hippel-Lindau gene and a small proportion are associated with infrequent mutations in other well characterized tumour-suppressor genes. In the past 15 years, efforts to uncover other key genes involved in renal cancer have identified many genes that are dysregulated or silenced via epigenetic mechanisms, mainly through methylation of promoter CpG islands or dysregulation of specific microRNAs. In addition, the advent of next-generation sequencing has led to the identification of several novel genes that are mutated in renal cancer, such as PBRM1, BAP1 and SETD2, which are all involved in histone modification and nucleosome and chromatin remodelling. In this Review, we discuss how altered DNA methylation, microRNA dysregulation and mutations in histone-modifying enzymes disrupt cellular pathways in renal cancers
    corecore